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Abstract

Numerical solution of nonlinear heat conduction equation is used to analyze nonlin-
ear effects in the laser flash experiment, when the thermophysical parameters of the
sample depend on the temperature. Parameter estimation technique is proposed to
determinate the temperature dependence of the thermal diffusivity from a response
curve. Computer generated data as well as a real experimental data were used to
demonstrate the technique.
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1 Introduction

In the laser flash method [1] one surface (at x = 0) of a small disc shaped
sample of thickness L is irradiated by a laser pulse and resulting temperature
rise at opposite surface (x = L) is used to calculate the thermal diffusivity α
of the sample material.

Existing data reduction methods for calculation of thermal diffusivity from the
temperature rise of the sample are based on assumption that the thermophysi-
cal parameters - heat capacity c and thermal conductivity λ (and also thermal
diffusivity α ≡ λ/c) are constants independent of temperature T within the
temperature range of the a flash experiment. One (or two) dimensional linear
heat conduction equation

∂T

∂t
= α

∂2T

∂x2
, (1)
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with initial and boundary conditions relevant to the experiment is solved and
the thermal diffusivity is calculated by fitting the experimental temperature
rise to the appropriate analytical solution of the Equation (1). For most of ma-
terials, temperature range and a final temperature rise . 1 K, the assumption
of constant thermophysical properties is valid and the results of the thermal
diffusivity determination are usually within a couple percent of claimed ex-
perimental uncertainty of the flash method.

Use of short and powerful laser pulses to measure very thin samples lead to
a temperature rise much greater than than a couple degrees K assumed for
a perturbation type experiment. The assumption that the temperature rise
of the sample is not very high is not longer valid. If the heat capacity c(T )
and the thermal conductivity λ(T ) varies with temperature then tempera-
ture distribution in sample is found by solving the nonlinear heat conduction
equation:

c(T )
∂T

∂t
=

∂

∂x

(
λ(T )

∂T

∂x

)
. (2)

Equation (2) will be solved numerically in this paper for a constant heat
capacity c(T ) = c0 and thermal conductivity as a function of temperature

λ(T ) =
a0

a1T + 1
, (3)

where a0, a1 > 0 are positive constant parameters. The effect of temperature
dependent λ(T ) on flash method diffusivity measurement was analyzed in [2]
where it was found that nonlinearity can be neglected up to certain degree
given by the value of the parameter a1. We will show that these parameters
can be determined from the response curve in the laser flash experiment using
a parameter estimation technique. Computer generated, as well as real experi-
mental data will be used to demonstrate the usage of the proposed procedure.

2 Numerical Solution

Equation (2) has been solved numerically using an implicit difference scheme
[3]. Sample thickness L is divided into N = 21 elements. The sample is ini-
tially in equilibrium state at temperature T0. Heat pulse is assumed to be
instantaneous (at t = 0) and its energy is absorbed in the first element, rising
its temperature to T1. Sample boundaries are adiabatically insulated.

Temperature Ti,m+1 of the i-th element (i = 1, 2, 3, . . . , N) at the time tm+1 =
(m + 1)∆t, m = 1, 2, . . . is given by a system of equations:
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Fig. 1.
Nonlinear temperature rise for different initial temperature T1 of the sample
front surface.

T1,m+1 = T1,m + 2For(T2,m+1 − T1,m+1)

Ti,m+1 = Ti,m + Fol(Ti−1,m+1 − Ti,m+1) + For(Ti+1,m+1 − Ti,m+1)

for i = 2, 3, . . . , N − 1

TN,m+1 = TN,m + 2Fol(TN−1,m+1 − T1N,m+1) (4)

where

Fol =
∆tλl

c∆x2
, For =

∆tλr

c∆x2

λl =
2λi−1λi

λi−1 + λi

, λr =
2λi+1λi

λi+1 + λi

(5)

and λi is is the thermal conductivity of i-th element. A standard iterative
algorithm was used to solve Equations (4).

Nonlinear temperature rise V (L, t) at x = L was calculated for a temperature
dependence of c(T ) = c0, where c0 is constant value of heat capacity at T0,
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Fig. 2.
Function (ln(V ) + ln(t/t1/2)/2) versus t1/2/t for a different T1.

and λ(T ) given by Equation (3). Since the heat capacity is constant, the
temperature dependence α(T ) will be similar to λ(T ).

Figure 1 shows the nonlinear temperature rise V (L, t) as a function of time for
various initial temperatures T1 of the first element. The curves are normalized
to a new steady temperature after the pulse and time is normalized to halftime
value t1/2. (Halftime is a time needed for the temperature at x = L to rise
to half of its new steady state value after the pulse.) Ideal curve for constant
values of c(T ) = c0 and λ(T ) = λ0 is also presented in Figure 1. Shape of the
nonlinear curves differs from the ideal curve. Generally, the nonlinear curves
lead the ideal one in the first half of their rise and lag behind the ideal one
in the second half. Curves for higher T1 rise more slowly, than those for lower
T1. The shape distortion is more noticeable for the curves with higher T1.

The differences between the ideal and nonlinear curves are more visible in
Figure 2, where a plot of (ln(V ) + ln(t/t1/2)/2) versus t1/2/t is presented for a
different initial temperature T1. Ideal curve, given by

Vi(L, t) =
L√
παt

∞∑

n=0

exp

[
−(2n + 1)2L2

4αt

]
, (6)
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is a straight line with a slope −L2/4αt1/2
.
= 1.80. The deviations from the

ideal curve shape increase with T1.

The differences in shape between the ideal and nonlinear curve make it im-
possible to match nonlinear curve with an ideal one using a constant value of
the thermal diffusivity. In principle [4] no single effective temperature Te can
be found for c(Te) and λ(Te) to describe the solution of nonlinear equation.
Experimental nonlinear curves can be normalized and apparent thermal dif-
fusivity value can be calculated from the halftime t1/2 using Parker’s formula

α = 0.139
L2

t1/2

, (7)

but the results will be a function of T1 (laser energy), as it was observed on
graphite samples in [5].

3 Parameter Estimation Technique

Determination of temperature dependent thermophysical properties from the
measured temperature responses is a coefficient inverse problem and many
numerical and analytical methods were proposed to solve this problem (see e.
g. [6]. In this paper, we describe a new simple parameter estimation technique
to determinate unknown coefficients of the temperature dependent thermal
conductivity (diffusivity) given by Equation (3) from a measured temperature
response in the flash method.

Sensitivity study of nonlinear response curve showed that its sensitivity coef-
ficients [7] (partial derivatives with respect to a0, a1, T0 and T1 respectively)

are linearly independent, so the coefficients ~β ≡ (a1, a2, T0, T1) can be found
simultaneously.

Ordinary least square procedure (Fortran package ODRPACK [8]) was used

to find the unknown parameters ~β from

min
~β

n∑

i=1

[fi(ti; ~β)− yi]
2, (8)

where fi(ti; ~β) is the temperature point at time ti calculated using the numeri-
cal solution given by Equations (4) and (ti, yi), i = 1, 2, 3, . . . , n are the points
of the temperature response curve (observed data).
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4 Results and Discussion

Five different sets of temperature rise were generated by a computer in order
to demonstrate proposed parameter estimation technique. In this example the
stability and accuracy of the technique are tested. Set 1 was generated using:
L = 0.002 m, c0 = 106 J/(m3K), a0 = 100 W/(mK), a1 = 0.05 K−1, ∆t = 10−6

s, T0 = 0 ◦C and T1 = 500 ◦C. The sets 2, 3, 4 and 5 were generated using Set
1 data with different level of noise added to the temperature points. Super-
imposed noise imitates experimental errors and was generated using random
number generator. The sets differ from each other by noise to signal ratio.

The results of parameter estimations are listed in Table 1. The reproducibility
and accuracy of the calculated parameters is relatively high, even for Set 5
with the highest noise to signal ratio. The differences between estimated and
exact value of the parameter are < 1% in all cases. Standard deviation (SD)
values of a0 are < 1% and SD values of a1 are < 2.5% of the estimated value.

Real experimental data has to be carefully examined before the proposed
parameter estimation technique is applied. Similar distortion can be caused
by e. g. finite pulse time effect when the pulse duration is comparable with
the halftime value or by a nonlinearity of the temperature detector used in
the experiment. Repeated measurements using different laser energy, different
pulse duration, or using different sample thicknesses have to be conducted to
identify the presence of nonlinearity in response curves.

A strong dependence of the apparent thermal diffusivity on laser pulse energy
for POCO ZXF-5Q graphite sample at room temperature was reported in [5].
The apparent values of the diffusivity were lower for higher laser pulse energy.
A plausible explanation was found in a fact that the thermal diffusivity of
graphite decreases with temperature and the dependence is stronger at room
temperature than at elevated temperatures.

Our laser flash experiments with a graphite foam samples at temperatures
around room temperature also showed temperature rise curves distortions sim-
ilar to the nonlinear curves plotted in Figure 1. Typical temperature rise of
graphite foam sample (L = 2.01 · 10−3 m, c0 = 6.86 · 105 J/(m3K)) after
the pulse was about 8 ◦C. Apparent thermal diffusivity was α = 1.19 · 10−4

m2/s. After finite pulse time correction [9], the thermal diffusivity value was
α = 1.45 · 10−4 m2/s. The results of our parameter estimation technique were:
T0 = 99.03 ◦C, T1 = 427 ◦C, α(T0) = (2.16± 0.15) · 10−4 m2/s and a1 = 0.093
K−1. The value of the thermal diffusivity at T0 calculated using the parameter
estimation technique seems to be more realistic than the corrected apparent
value. On the other hand, the value of parameter a1 indicates that the ther-
mal diffusivity decreases with temperature more rapidly than was found in the
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Table 1
Results of parameter estimation.

Set Ratio T0 T1 a0 SD a1 SD

No. N/S ◦C ◦C W/(mK) W/(mK) 1/K 1/K

1 0 0.00 500.00 100.00 0.00 0.05000 0.00000

2 0.008 0.00 499.96 99.87 0.20 0.04981 0.00025

3 0.017 0.00 499.93 99.74 0.43 0.04962 0.00057

4 0.025 0.00 499.89 99.60 0.64 0.04943 0.00086

5 0.042 0.00 499.85 99.47 0.86 0.04925 0.00114

experiment. The response curve was distorted mainly due to the finite pulse
time effect.
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